Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Nat Commun ; 15(1): 3430, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653772

RESUMO

The route and speed of migration into Sahul by Homo sapiens remain a major research question in archaeology. Here, we introduce an approach which models the impact of the physical environment on human mobility by combining time-evolving landscapes with Lévy walk foraging patterns, this latter accounting for a combination of short-distance steps and occasional longer moves that hunter-gatherers likely utilised for efficient exploration of new environments. Our results suggest a wave of dispersal radiating across Sahul following riverine corridors and coastlines. Estimated migration speeds, based on archaeological sites and predicted travelled distances, fall within previously reported range from Sahul and other regions. From our mechanistic movement simulations, we then analyse the likelihood of archaeological sites and highlight areas in Australia that hold archaeological potential. Our approach complements existing methods and provides interesting perspectives on the Pleistocene archaeology of Sahul that could be applied to other regions around the world.


Assuntos
Arqueologia , Migração Humana , Humanos , Migração Humana/história , Austrália , História Antiga , Geografia , Comportamento Alimentar/fisiologia
2.
Nature ; 627(8005): 805-810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448591

RESUMO

Stone tools stratified in alluvium and loess at Korolevo, western Ukraine, have been studied by several research groups1-3 since the discovery of the site in the 1970s. Although Korolevo's importance to the European Palaeolithic is widely acknowledged, age constraints on the lowermost lithic artefacts have yet to be determined conclusively. Here, using two methods of burial dating with cosmogenic nuclides4,5, we report ages of 1.42 ± 0.10 million years and 1.42 ± 0.28 million years for the sedimentary unit that contains Mode-1-type lithic artefacts. Korolevo represents, to our knowledge, the earliest securely dated hominin presence in Europe, and bridges the spatial and temporal gap between the Caucasus (around 1.85-1.78 million years ago)6 and southwestern Europe (around 1.2-1.1 million years ago)7,8. Our findings advance the hypothesis that Europe was colonized from the east, and our analysis of habitat suitability9 suggests that early hominins exploited warm interglacial periods to disperse into higher latitudes and relatively continental sites-such as Korolevo-well before the Middle Pleistocene Transition.


Assuntos
Sepultamento , Migração Humana , Datação Radiométrica , Humanos , Arqueologia , Sepultamento/história , Europa (Continente) , Fósseis , História Antiga , Migração Humana/história , Reprodutibilidade dos Testes , Ucrânia , Fatores de Tempo
3.
Nature ; 628(8007): 365-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509364

RESUMO

Although modern humans left Africa multiple times over 100,000 years ago, those broadly ancestral to non-Africans dispersed less than 100,000 years ago1. Most models hold that these events occurred through green corridors created during humid periods because arid intervals constrained population movements2. Here we report an archaeological site-Shinfa-Metema 1, in the lowlands of northwest Ethiopia, with Youngest Toba Tuff cryptotephra dated to around 74,000 years ago-that provides early and rare evidence of intensive riverine-based foraging aided by the likely adoption of the bow and arrow. The diet included a wide range of terrestrial and aquatic animals. Stable oxygen isotopes from fossil mammal teeth and ostrich eggshell show that the site was occupied during a period of high seasonal aridity. The unusual abundance of fish suggests that capture occurred in the ever smaller and shallower waterholes of a seasonal river during a long dry season, revealing flexible adaptations to challenging climatic conditions during the Middle Stone Age. Adaptive foraging along dry-season waterholes would have transformed seasonal rivers into 'blue highway' corridors, potentially facilitating an out-of-Africa dispersal and suggesting that the event was not restricted to times of humid climates. The behavioural flexibility required to survive seasonally arid conditions in general, and the apparent short-term effects of the Toba supereruption in particular were probably key to the most recent dispersal and subsequent worldwide expansion of modern humans.


Assuntos
Clima , Migração Humana , Animais , Humanos , Arqueologia , Etiópia , Mamíferos , Estações do Ano , Dieta/história , História Antiga , Migração Humana/história , Fósseis , Struthioniformes , Secas , Peixes
4.
Nature ; 626(7998): 341-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297117

RESUMO

The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.


Assuntos
Migração Humana , Animais , Humanos , Restos Mortais/metabolismo , DNA Antigo/análise , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Europa (Continente) , Extinção Biológica , Fósseis , Alemanha , História Antiga , Homem de Neandertal/classificação , Homem de Neandertal/genética , Homem de Neandertal/metabolismo , Proteômica , Datação Radiométrica , Migração Humana/história , Fatores de Tempo
5.
Nature ; 625(7994): 321-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200296

RESUMO

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Assuntos
Predisposição Genética para Doença , Genoma Humano , Pradaria , Esclerose Múltipla , Humanos , Conjuntos de Dados como Assunto , Dieta/etnologia , Dieta/história , Europa (Continente)/etnologia , Predisposição Genética para Doença/história , Genética Médica , História do Século XV , História Antiga , História Medieval , Migração Humana/história , Estilo de Vida/etnologia , Estilo de Vida/história , Esclerose Múltipla/genética , Esclerose Múltipla/história , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/história , Doenças Neurodegenerativas/imunologia , Densidade Demográfica
6.
Nature ; 625(7994): 329-337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200294

RESUMO

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Assuntos
Genoma Humano , Genômica , Migração Humana , Populações Escandinavas e Nórdicas , Humanos , Dinamarca/etnologia , Emigrantes e Imigrantes/história , Genótipo , Populações Escandinavas e Nórdicas/genética , Populações Escandinavas e Nórdicas/história , Migração Humana/história , Genoma Humano/genética , História Antiga , Pólen , Dieta/história , Caça/história , Fazendeiros/história , Cultura , Fenótipo , Conjuntos de Dados como Assunto
7.
Nature ; 625(7994): 301-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200295

RESUMO

Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.


Assuntos
Genética Populacional , Genoma Humano , Migração Humana , Metagenômica , Humanos , Agricultura/história , Ásia Ocidental , Mar Negro , Diploide , Europa (Continente)/etnologia , Genótipo , História Antiga , Migração Humana/história , Caça/história , Camada de Gelo
8.
Nature ; 624(7990): 122-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993721

RESUMO

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Assuntos
Variação Genética , Povos Indígenas , Humanos , Agricultura/história , California/etnologia , Região do Caribe/etnologia , Etnicidade/genética , Etnicidade/história , Europa (Continente)/etnologia , Variação Genética/genética , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História Antiga , História Medieval , Migração Humana/história , Povos Indígenas/genética , Povos Indígenas/história , Ilhas , Idioma/história , México/etnologia , Zea mays , Genoma Humano/genética , Genômica , Alelos
9.
Science ; 382(6666): 36-37, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797034

RESUMO

A debate about the age of ancient footprints continues.


Assuntos
Migração Humana , Humanos , América , Migração Humana/história
10.
Nat Ecol Evol ; 7(9): 1515-1524, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592021

RESUMO

The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.


Assuntos
DNA Antigo , Migração Humana , Região do Mediterrâneo , Arqueologia , Migração Humana/história , Humanos , Análise de Componente Principal , Genética Humana , DNA Antigo/análise , Análise de Sequência de DNA , Sepultamento , Antropologia , História Antiga
12.
Nature ; 618(7965): 550-556, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286608

RESUMO

In northwestern Africa, lifestyle transitioned from foraging to food production around 7,400 years ago but what sparked that change remains unclear. Archaeological data support conflicting views: (1) that migrant European Neolithic farmers brought the new way of life to North Africa1-3 or (2) that local hunter-gatherers adopted technological innovations4,5. The latter view is also supported by archaeogenetic data6. Here we fill key chronological and archaeogenetic gaps for the Maghreb, from Epipalaeolithic to Middle Neolithic, by sequencing the genomes of nine individuals (to between 45.8- and 0.2-fold genome coverage). Notably, we trace 8,000 years of population continuity and isolation from the Upper Palaeolithic, via the Epipaleolithic, to some Maghrebi Neolithic farming groups. However, remains from the earliest Neolithic contexts showed mostly European Neolithic ancestry. We suggest that farming was introduced by European migrants and was then rapidly adopted by local groups. During the Middle Neolithic a new ancestry from the Levant appears in the Maghreb, coinciding with the arrival of pastoralism in the region, and all three ancestries blend together during the Late Neolithic. Our results show ancestry shifts in the Neolithization of northwestern Africa that probably mirrored a heterogeneous economic and cultural landscape, in a more multifaceted process than observed in other regions.


Assuntos
Agricultura , Arqueologia , Migração Humana , Migrantes , Humanos , África do Norte , Agricultura/história , Europa (Continente)/etnologia , Fazendeiros/história , Genoma Humano/genética , Genômica , História Antiga , Migração Humana/história , Migrantes/história , África Ocidental , Difusão de Inovações
13.
Nature ; 617(7962): 755-763, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198480

RESUMO

Despite broad agreement that Homo sapiens originated in Africa, considerable uncertainty surrounds specific models of divergence and migration across the continent1. Progress is hampered by a shortage of fossil and genomic data, as well as variability in previous estimates of divergence times1. Here we seek to discriminate among such models by considering linkage disequilibrium and diversity-based statistics, optimized for rapid, complex demographic inference2. We infer detailed demographic models for populations across Africa, including eastern and western representatives, and newly sequenced whole genomes from 44 Nama (Khoe-San) individuals from southern Africa. We infer a reticulated African population history in which present-day population structure dates back to Marine Isotope Stage 5. The earliest population divergence among contemporary populations occurred 120,000 to 135,000 years ago and was preceded by links between two or more weakly differentiated ancestral Homo populations connected by gene flow over hundreds of thousands of years. Such weakly structured stem models explain patterns of polymorphism that had previously been attributed to contributions from archaic hominins in Africa2-7. In contrast to models with archaic introgression, we predict that fossil remains from coexisting ancestral populations should be genetically and morphologically similar, and that only an inferred 1-4% of genetic differentiation among contemporary human populations can be attributed to genetic drift between stem populations. We show that model misspecification explains the variation in previous estimates of divergence times, and argue that studying a range of models is key to making robust inferences about deep history.


Assuntos
Genética Populacional , Migração Humana , Filogenia , Humanos , África/etnologia , Fósseis , Fluxo Gênico , Deriva Genética , Introgressão Genética , Genoma Humano , História Antiga , Migração Humana/história , Desequilíbrio de Ligação/genética , Polimorfismo Genético , Fatores de Tempo
15.
Nat Ecol Evol ; 7(2): 290-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646948

RESUMO

The Neolithic and Bronze Ages were highly transformative periods for the genetic history of Europe but for the Aegean-a region fundamental to Europe's prehistory-the biological dimensions of cultural transitions have been elucidated only to a limited extent so far. We have analysed newly generated genome-wide data from 102 ancient individuals from Crete, the Greek mainland and the Aegean Islands, spanning from the Neolithic to the Iron Age. We found that the early farmers from Crete shared the same ancestry as other contemporaneous Neolithic Aegeans. In contrast, the end of the Neolithic period and the following Early Bronze Age were marked by 'eastern' gene flow, which was predominantly of Anatolian origin in Crete. Confirming previous findings for additional Central/Eastern European ancestry in the Greek mainland by the Middle Bronze Age, we additionally show that such genetic signatures appeared in Crete gradually from the seventeenth to twelfth centuries BC, a period when the influence of the mainland over the island intensified. Biological and cultural connectedness within the Aegean is also supported by the finding of consanguineous endogamy practiced at high frequencies, unprecedented in the global ancient DNA record. Our results highlight the potential of archaeogenomic approaches in the Aegean for unravelling the interplay of genetic admixture, marital and other cultural practices.


Assuntos
DNA Antigo , Migração Humana , Humanos , Migração Humana/história , Europa (Continente) , Grécia , Genoma
16.
Nature ; 610(7930): 112-119, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131019

RESUMO

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Assuntos
Pool Gênico , Migração Humana , Arqueologia , DNA Antigo/análise , Dinamarca , Inglaterra , Feminino , França , Genética Populacional , Genoma Humano/genética , Alemanha , História Medieval , Migração Humana/história , Humanos , Idioma , Masculino , Dinâmica Populacional , Armas/história
17.
Science ; 377(6609): 940-951, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007020

RESUMO

Literary and archaeological sources have preserved a rich history of Southern Europe and West Asia since the Bronze Age that can be complemented by genetics. Mycenaean period elites in Greece did not differ from the general population and included both people with some steppe ancestry and others, like the Griffin Warrior, without it. Similarly, people in the central area of the Urartian Kingdom around Lake Van lacked the steppe ancestry characteristic of the kingdom's northern provinces. Anatolia exhibited extraordinary continuity down to the Roman and Byzantine periods, with its people serving as the demographic core of much of the Roman Empire, including the city of Rome itself. During medieval times, migrations associated with Slavic and Turkic speakers profoundly affected the region.


Assuntos
Migração Humana , População , Arqueologia , Ásia , Europa (Continente) , Variação Genética , Grécia , História Antiga , História Medieval , Migração Humana/história , Humanos , População/genética
18.
Science ; 377(6609): 982-987, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007054

RESUMO

We present the first ancient DNA data from the Pre-Pottery Neolithic of Mesopotamia (Southeastern Turkey and Northern Iraq), Cyprus, and the Northwestern Zagros, along with the first data from Neolithic Armenia. We show that these and neighboring populations were formed through admixture of pre-Neolithic sources related to Anatolian, Caucasus, and Levantine hunter-gatherers, forming a Neolithic continuum of ancestry mirroring the geography of West Asia. By analyzing Pre-Pottery and Pottery Neolithic populations of Anatolia, we show that the former were derived from admixture between Mesopotamian-related and local Epipaleolithic-related sources, but the latter experienced additional Levantine-related gene flow, thus documenting at least two pulses of migration from the Fertile Crescent heartland to the early farmers of Anatolia.


Assuntos
Fazendeiros , Fluxo Gênico , Migração Humana , Arqueologia , Armênia , Chipre , DNA Antigo , Fazendeiros/história , História Antiga , Migração Humana/história , Mesopotâmia
19.
Science ; 377(6609): eabm4247, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007055

RESUMO

By sequencing 727 ancient individuals from the Southern Arc (Anatolia and its neighbors in Southeastern Europe and West Asia) over 10,000 years, we contextualize its Chalcolithic period and Bronze Age (about 5000 to 1000 BCE), when extensive gene flow entangled it with the Eurasian steppe. Two streams of migration transmitted Caucasus and Anatolian/Levantine ancestry northward, and the Yamnaya pastoralists, formed on the steppe, then spread southward into the Balkans and across the Caucasus into Armenia, where they left numerous patrilineal descendants. Anatolia was transformed by intra-West Asian gene flow, with negligible impact of the later Yamnaya migrations. This contrasts with all other regions where Indo-European languages were spoken, suggesting that the homeland of the Indo-Anatolian language family was in West Asia, with only secondary dispersals of non-Anatolian Indo-Europeans from the steppe.


Assuntos
Fluxo Gênico , Genoma Humano , Migração Humana , Ásia , Península Balcânica , Europa (Continente) , História Antiga , Migração Humana/história , Humanos , População Branca/genética
20.
Science ; 377(6601): 72-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771911

RESUMO

Micronesia began to be peopled earlier than other parts of Remote Oceania, but the origins of its inhabitants remain unclear. We generated genome-wide data from 164 ancient and 112 modern individuals. Analysis reveals five migratory streams into Micronesia. Three are East Asian related, one is Polynesian, and a fifth is a Papuan source related to mainland New Guineans that is different from the New Britain-related Papuan source for southwest Pacific populations but is similarly derived from male migrants ~2500 to 2000 years ago. People of the Mariana Archipelago may derive all of their precolonial ancestry from East Asian sources, making them the only Remote Oceanians without Papuan ancestry. Female-inherited mitochondrial DNA was highly differentiated across early Remote Oceanian communities but homogeneous within, implying matrilocal practices whereby women almost never raised their children in communities different from the ones in which they grew up.


Assuntos
DNA Antigo , DNA Mitocondrial , Migração Humana , Povo Asiático/genética , Criança , DNA Mitocondrial/genética , Feminino , História Antiga , Migração Humana/história , Humanos , Masculino , Micronésia , Oceania
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...